Regularity of the obstacle problem for the parabolic biharmonic equation
نویسنده
چکیده
We study the regularity of solutions to the obstacle problem for the parabolic biharmonic equation. We analyze the problem via an implicit time discretization, and we prove some regularity properties of the solution.
منابع مشابه
The Two Obstacle Problem for the Parabolic Biharmonic Equation
We consider a two obstacle problem for the parabolic biharmonic equation in a bounded domain. We prove long time existence of solutions via an implicit time discretization scheme, and we investigate the regularity properties of solutions.
متن کاملRegularity of the free boundary in the biharmonic obstacle problem
In this article we use flatness improvement argument to study the regularity of the free boundary for the biharmonic obstacle problem with zero obstacle. Assuming that the solution is almost one-dimensional, and that the non-coincidence set is an non-tangentially accessible (NTA) domain, we derive the C-regularity of the free boundary in a small ball centered at the origin. From the C-regularit...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملMultiple solutions for a perturbed Navier boundary value problem involving the $p$-biharmonic
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
متن کاملFree Boundary Regularity Close to Initial State for Parabolic Obstacle Problem
In this paper we study the behavior of the free boundary ∂{u > ψ}, arising in the following complementary problem: (Hu)(u− ψ) = 0, u ≥ ψ(x, t) in Q, Hu ≤ 0, u(x, t) ≥ ψ(x, t) on ∂pQ. Here ∂p denotes the parabolic boundary, H is a parabolic operator with certain properties, Q+ is the upper half of the unit cylinder in R, and the equation is satisfied in the viscosity sense. The obstacle ψ is ass...
متن کامل